
Andreas Zeller

The Scientific Method

2

A Sample Program
sample 9 8 7$

Output: 7 8 9

sample 11 14$
Output: 0 11

Where’s the error that causes this failure?

3

Errors
What’s the error in the sample program?

• An error is a deviation from what’s
correct, right, or true. (IEEE glossary)

To prove that something is an error, we must
show the deviation:

• Simple for failures, hard for the program

Where does sample.c deviate from – what?

4

Causes and Effects
What’s the cause of the sample failure?

• The cause of any event (”effect”) is a
preceding event without which the effect
would not have occurred.

To prove causality, one must show that

• the effect occurs when the cause occurs

• the effect does not occur when the cause
does not.

5

Establishing Causality
In natural and social sciences, causality is
often hard to establish.

• Did long lines at election sites cause
George W. Bush to become president?

• Did drugs cause the death of Elvis?

• Does CO₂ production cause global
warming?

6

Repeating History
• To determine causes formally, we would

have to repeat history – in an alternate
world that is as close as possible to ours.

• Since we cannot repeat history, we have to
speculate what would have happened.

• Some researchers have suggested to drop
the concept of causality altogether

7

Repeating Runs

In computer science, we are luckier:

• Program runs can be controlled and
repeated at will
(well, almost: physics can’t be repeated)

• Abstraction is kept to a minimum – the
program is the real thing.

8

“Here’s the Bug”
• Some people are good at guessing causes!

• Unfortunately, intuition is hard to grasp:

• Requires a priori knowledge

• Does not work in a systematic and
reproducible fashion

• In short: Intuition cannot be taught

9

The Scientific Method

• The scientific method is a general pattern of
how to find a theory that explains (and
predicts) some aspect of the universe

• Called “scientific method” because it’s
supposed to summarize the way that
(experimental) scientists work

10

The Scientific Method
1. Observe some aspect of the universe.

2. Invent a hypothesis that is consistent with
the observation.

3. Use the hypothesis to make predictions.

4. Tests the predictions by experiments or
observations and modify the hypothesis.

5. Repeat 3 and 4 to refine the hypothesis.

11

A Theory
• When the hypothesis explains all

experiments and observations, the
hypothesis becomes a theory.

• A theory is a hypothesis that

• explains earlier observations

• predicts further observations

• In our context, a theory is called a diagnosis
(Contrast to popular usage, where a theory is a vague guess)

12

Mastermind
• A Mastermind

game is a typical
example of applying
the scientific
method.

• Create hypotheses
until the theory
predicts the secret.

13

Scientific Method
of Debugging

Hypothesis

Problem Report

Code

Run

More Runs

Prediction Experiment Observation
+ Conclusion

Hypothesis is supported:
refine hypothesis

Hypothesis is rejected:
create new hypothesis

Diagnosis

14

A Sample Program
sample 9 8 7$

Output: 7 8 9

sample 11 14$
Output: 0 11

Let’s use the scientific method to debug this.

15

Initial Hypothesis
Hypothesis

Prediction

Experiment

Observation

Conclusion

“sample 11 14” works.

Output is “11 14”

Run sample as above.

Output is “0 11”

Hypothesis is rejected.

16

int main(int argc, char *argv[])
{
 int *a;
 int i;

 a = (int *)malloc((argc - 1) * sizeof(int));
 for (i = 0; i < argc - 1; i++)
 a[i] = atoi(argv[i + 1]);

 shell_sort(a, argc);

 printf("Output: ");
 for (i = 0; i < argc - 1; i++)
 printf("%d ", a[i]);
 printf("\n");

 free(a);

 return 0;
}

Does a[0] = 0 hold?

17

Hypothesis 1: a[]
Hypothesis

Prediction

Experiment

Observation

Conclusion

The execution causes a[0] = 0

At Line 37, a[0] = 0 should hold.

Observe a[0] at Line 37.

a[0] = 0 holds as predicted.

Hypothesis is confirmed.

18

static void shell_sort(int a[], int size)
{
 int i, j;
 int h = 1;
 do {
 h = h * 3 + 1;
 } while (h <= size);
 do {
 h /= 3;
 for (i = h; i < size; i++)
 {
 int v = a[i];
 for (j = i; j >= h && a[j - h] > v; j -= h)
 a[j] = a[j - h];
 if (i != j)
 a[j] = v;
 }
 } while (h != 1);
}

Is the state sane here?

19

Hypothesis 2:
shell_sort()

Hypothesis

Prediction

Experiment

Observation

Conclusion

The infection does not take
place until shell_sort.

At Line 6, a[] = [11, 14]; size = 2

Observe a[] and size at Line 6.

a[] = [11, 14, 0]; size = 3.

Hypothesis is rejected.

20

Hypothesis 3: size
Hypothesis

Prediction

Experiment

Observation

Conclusion

size = 3 causes the failure.

Changing size to 2 should make
the output correct.

Set size = 2 using a debugger.

As predicted.

Hypothesis is confirmed.

21

 shell_sort(a, argc); shell_sort(a, argc - 1); shell_sort(a, argc);

int main(int argc, char *argv[])
{
 int *a;
 int i;

 a = (int *)malloc((argc - 1) * sizeof(int));
 for (i = 0; i < argc - 1; i++)
 a[i] = atoi(argv[i + 1]);

 ...
}

Fixing the Program

sample 11 14$
Output: 11 14

22

Hypothesis 4: argc
Hypothesis

Prediction

Experiment

Observation

Conclusion

Invocation of shell_sort with
size = argc causes the failure.
Changing argc to argc - 1 should
make the run successful.
Change argc to argc - 1 and
recompile.

As predicted.

Hypothesis is confirmed.

23

The Diagnosis

• Cause is “Invoking shell_sort() with argc”

• Proven by two experiments:

• Invoked with argc, the failure occurs;

• Invoked with argc - 1, it does not.

• Side-effect: we have a fix
(Note that we don’t have correctness – but take my word)

24

Explicit Debugging

• Being explicit is
important to
understand the
problem.

• Just stating the
problem can
already solve it.

25

Keeping Track

• In a Mastermind
game, all
hypotheses and
observations are
explicit.

• Makes playing the
game much easier.

26

Implicit Debugging

• Remember your last debugging session:
Did you write down hypotheses and
observations?

• Not being explicit forces you to keep all
hypotheses and outcomes in memory

• Like playing Mastermind in memory

27

Daysleeper
I'm the screen, the blinding light
I'm the screen, I work at night

I see today with a newsprint fray
My night is colored headache grey
Don't wake me with so much
Daysleeper

28

Keep a Notebook
Everything gets written down, formally, so
that you know at all times

• where you are,

• where you've been,

• where you're going, and

• where you want to get.

Otherwise the problems get so complex you
get lost in them.

29

What to Keep
Hypothesis

Prediction

Experiment

Observation

Conclusion

Faced with a difficult task,
“sleeping on it” makes students

three times more apt
to solve the task the next morning.

30

Quick and Dirty

• Not every problem needs the strength of
the scientific method or a notebook – a
quick-and-dirty process suffices.

• Suggestion: Go quick and dirty for
10 minutes, and then apply the scientific
method.

Algorithmic Debugging

31

✘

Is this correct?

✔

Is this correct?

✘

Is this correct?

✔

Is this correct?

✔

Defect

Algorithmic Debugging

1. Assume an incorrect result R with origins
O1, O2, …, On

2. For each Oi, enquire whether Oi is correct

3. If some Oi is incorrect, continue at Step 1

4. Otherwise (all Oi are correct), we found
the defect

32

33

def insert(elem, list):
 if len(list) == 0:
 return [elem]
 head = list[0]
 tail = list[1:]
 if elem <= head:
 return list + [elem]
 return [head] + insert(elem, tail)

def sort(list):
 if len(list) <= 1:
 return list
 head = list[0]
 tail = list[1:]
 return insert(head, sort(tail))

34

sort([2, 1, 3])

sort([1, 3])

sort([3]) insert(1, [3])

insert(2, [3, 1])

sort([3]) = [3] insert(1, [3]) = [3,1]

sort([1, 3]) = [3,1] insert(2, [3, 1]) = [2, 3,1]

sort([2, 1, 3]) = [2, 3, 1]

Is this
correct?

Is this
correct?

Is this
correct?

Is this
correct?

✔

✘

✘

✘

35

insert(1, [3])insert(1, [3]) = [3,1] ✘

• insert() produces an incorrect result and
has no further origins:

• It must be the source of the incorrect value

Defect Location

36

def insert(elem, list):
 if len(list) == 0:
 return [elem]
 head = list[0]
 tail = list[1:]
 if elem <= head:
 return list + [elem]
 return [head] + insert(elem, tail)

def sort(list):
 if len(list) <= 1:
 return list
 head = list[0]
 tail = list[1:]
 return insert(head, sort(tail))

[elem] + list

37

Discussion

Detects defects systematically

Works naturally for logical + functional
computations

Won’t work for large states (and
imperative computations)

Do programmers like being driven?

Oracles

• In algorithmic debugging, the user acts as an
oracle – telling correct from false results

• With an automatic oracle could isolate any
defect automatically.

• How complex would such an oracle be?

38

39

Obtaining a Hypothesis

Hypothesis

Problem Report

Code

Run

More Runs

Deducing from

Observing a

Learning from

…all in the next weeks!

Earlier Hypotheses
+ Observations

40

Sources of Hypotheses

Deduction

Observation

Induction

Experimentation

0 runs

1 run

n runs

n controlled runs

41

Concepts

A cause of any event (”effect”) is a
preceding event without which the effect
would not have occurred.

To isolate a failure cause, use the
scientific method.

Make the problem and its solution explicit.

42

Concepts

Automated debugging organizes the
scientific method by having the user assess
outcomes

Best suited for functional and logical
programs

43

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

