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A Sample Program
sample 9 8 7$

Output: 7 8 9

sample 11 14$
Output: 0 11 

Where’s the error that causes this failure?
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Errors
What’s the error in the sample program?

• An error is a deviation from what’s 
correct, right, or true. (IEEE glossary)

To prove that something is an error, we must 
show the deviation:

• Simple for failures, hard for the program

Where does sample.c deviate from – what?
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Causes and Effects
What’s the cause of the sample failure?

• The cause of any event (”effect”) is a 
preceding event without which the effect 
would not have occurred.

To prove causality, one must show that

• the effect occurs when the cause occurs

• the effect does not occur when the cause 
does not.
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Establishing Causality
In natural and social sciences, causality is 
often hard to establish.

• Did long lines at election sites cause 
George W. Bush to become president?

• Did drugs cause the death of Elvis?

• Does CO₂ production cause global 
warming?
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Repeating History
• To determine causes formally, we would 

have to repeat history – in an alternate 
world that is as close as possible to ours.

• Since we cannot repeat history, we have to 
speculate what would have happened.

• Some researchers have suggested to drop 
the concept of causality altogether
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Repeating Runs

In computer science, we are luckier:

• Program runs can be controlled and 
repeated at will
(well, almost: physics can’t be repeated)

• Abstraction is kept to a minimum – the 
program is the real thing.
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“Here’s the Bug”
• Some people are good at guessing causes!

• Unfortunately, intuition is hard to grasp:

• Requires a priori knowledge

• Does not work in a systematic and 
reproducible fashion

• In short: Intuition cannot be taught
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The Scientific Method

• The scientific method is a general pattern of 
how to find a theory that explains (and 
predicts) some aspect of the universe

• Called “scientific method” because it’s 
supposed to summarize the way that 
(experimental) scientists work
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The Scientific Method
1. Observe some aspect of the universe.

2. Invent a hypothesis that is consistent with 
the observation.

3. Use the hypothesis to make predictions.

4. Tests the predictions by experiments or 
observations and modify the hypothesis.

5. Repeat 3 and 4 to refine the hypothesis.
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A Theory
• When the hypothesis explains all 

experiments and observations, the 
hypothesis becomes a theory.

• A theory is a hypothesis that

• explains earlier observations

• predicts further observations

• In our context, a theory is called a diagnosis
(Contrast to popular usage, where a theory is a vague guess)
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Mastermind
• A Mastermind 

game is a typical 
example of applying 
the scientific 
method.

• Create hypotheses 
until the theory 
predicts the secret.
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Scientific Method 
of Debugging

Hypothesis

Problem Report

Code

Run

More Runs

Prediction Experiment Observation
+ Conclusion

Hypothesis is supported:
refine hypothesis

Hypothesis is rejected:
create new hypothesis

Diagnosis
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A Sample Program
sample 9 8 7$

Output: 7 8 9

sample 11 14$
Output: 0 11 

Let’s use the scientific method to debug this.
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Initial Hypothesis
Hypothesis

Prediction

Experiment

Observation

Conclusion

“sample 11 14” works.

Output is “11 14”

Run sample as above.

Output is “0 11”

Hypothesis is rejected.
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int main(int argc, char *argv[])
{
    int *a;
    int i;

    a = (int *)malloc((argc - 1) * sizeof(int));
    for (i = 0; i < argc - 1; i++)
        a[i] = atoi(argv[i + 1]);

    shell_sort(a, argc);

    printf("Output: ");
    for (i = 0; i < argc - 1; i++)
        printf("%d ", a[i]);
    printf("\n");

    free(a);

    return 0;
}

Does a[0] = 0 hold?
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Hypothesis 1: a[]
Hypothesis

Prediction

Experiment

Observation

Conclusion

The execution causes a[0] = 0

At Line 37, a[0] = 0 should hold.

Observe a[0] at Line 37.

a[0] = 0 holds as predicted.

Hypothesis is confirmed.
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static void shell_sort(int a[], int size)
{
    int i, j;
    int h = 1;
    do {
        h = h * 3 + 1;
    } while (h <= size);
    do {
        h /= 3;
        for (i = h; i < size; i++)
        {
            int v = a[i];
            for (j = i; j >= h && a[j - h] > v; j -= h)
                a[j] = a[j - h];
            if (i != j)
                a[j] = v;
        }
    } while (h != 1);
}

Is the state sane here?
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Hypothesis 2:
shell_sort()

Hypothesis

Prediction

Experiment

Observation

Conclusion

The infection does not take 
place until shell_sort.

At Line 6, a[] = [11, 14]; size = 2

Observe a[] and size at Line 6.

a[] = [11, 14, 0]; size = 3.

Hypothesis is rejected.
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Hypothesis 3: size
Hypothesis

Prediction

Experiment

Observation

Conclusion

size = 3 causes the failure.

Changing size to 2 should make 
the output correct.

Set size = 2 using a debugger.

As predicted.

Hypothesis is confirmed.
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    shell_sort(a, argc);    shell_sort(a, argc - 1);    shell_sort(a, argc);

int main(int argc, char *argv[])
{
    int *a;
    int i;

    a = (int *)malloc((argc - 1) * sizeof(int));
    for (i = 0; i < argc - 1; i++)
        a[i] = atoi(argv[i + 1]);

    ...
}

Fixing the Program

sample 11 14$
Output: 11 14
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Hypothesis 4: argc
Hypothesis

Prediction

Experiment

Observation

Conclusion

Invocation of shell_sort with 
size = argc causes the failure.
Changing argc to argc - 1 should 
make the run successful.
Change argc to argc - 1 and 
recompile.

As predicted.

Hypothesis is confirmed.
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The Diagnosis

• Cause is “Invoking shell_sort() with argc”

• Proven by two experiments:

• Invoked with argc, the failure occurs;

• Invoked with argc - 1, it does not.

• Side-effect: we have a fix
(Note that we don’t have correctness – but take my word)



24

Explicit Debugging

• Being explicit is 
important to 
understand the 
problem.

• Just stating the 
problem can 
already solve it.
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Keeping Track

• In a Mastermind 
game, all 
hypotheses and 
observations are 
explicit.

• Makes playing the 
game much easier.
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Implicit Debugging

• Remember your last debugging session:
Did you write down hypotheses and 
observations?

• Not being explicit forces you to keep all 
hypotheses and outcomes in memory

• Like playing Mastermind in memory
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Daysleeper
I'm the screen, the blinding light
I'm the screen, I work at night

I see today with a newsprint fray
My night is colored headache grey
Don't wake me with so much
Daysleeper
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Keep a Notebook
Everything gets written down, formally, so 
that you know at all times

• where you are,

• where you've been,

• where you're going, and

• where you want to get. 

Otherwise the problems get so complex you 
get lost in them.
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What to Keep
Hypothesis

Prediction

Experiment

Observation

Conclusion

Faced with a difficult task,
“sleeping on it” makes students

three times more apt
to solve the task the next morning.
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Quick and Dirty

• Not every problem needs the strength of 
the scientific method or a notebook – a 
quick-and-dirty process suffices.

• Suggestion: Go quick and dirty for 
10 minutes, and then apply the scientific 
method.



Algorithmic Debugging
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✘

Is this correct?

✔

Is this correct?

✘

Is this correct?

✔

Is this correct?

✔

Defect



Algorithmic Debugging

1. Assume an incorrect result R with origins 
O1, O2, …, On

2. For each Oi, enquire whether Oi is correct

3. If some Oi is incorrect, continue at Step 1

4. Otherwise (all Oi are correct), we found 
the defect

32
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def insert(elem, list):
    if len(list) == 0:
        return [elem]
    head = list[0]
    tail = list[1:]
    if elem <= head:
        return list + [elem]
    return [head] + insert(elem, tail)

def sort(list):
    if len(list) <= 1:
        return list    
    head = list[0]
    tail = list[1:]
    return insert(head, sort(tail))
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sort([2, 1, 3])

sort([1, 3])

sort([3]) insert(1, [3])

insert(2, [3, 1])

sort([3]) = [3] insert(1, [3]) = [3,1]

sort([1, 3]) = [3,1] insert(2, [3, 1]) = [2, 3,1]

sort([2, 1, 3]) = [2, 3, 1]

Is this 
correct?

Is this 
correct?

Is this 
correct?

Is this 
correct?

✔

✘

✘

✘
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insert(1, [3])insert(1, [3]) = [3,1] ✘

• insert() produces an incorrect result and 
has no further origins:

• It must be the source of the incorrect value

Defect Location
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def insert(elem, list):
    if len(list) == 0:
        return [elem]
    head = list[0]
    tail = list[1:]
    if elem <= head:
        return list + [elem]
    return [head] + insert(elem, tail)

def sort(list):
    if len(list) <= 1:
        return list    
    head = list[0]
    tail = list[1:]
    return insert(head, sort(tail))

[elem] + list
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Discussion

Detects defects systematically

Works naturally for logical + functional 
computations

Won’t work for large states (and 
imperative computations)

Do programmers like being driven?



Oracles

• In algorithmic debugging, the user acts as an 
oracle – telling correct from false results

• With an automatic oracle could isolate any 
defect automatically.

• How complex would such an oracle be?

38
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Obtaining a Hypothesis

Hypothesis

Problem Report

Code

Run

More Runs

Deducing from

Observing a

Learning from

…all in the next weeks!

Earlier Hypotheses
+ Observations
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Sources of Hypotheses

Deduction

Observation

Induction

Experimentation

0 runs

1 run

n runs

n controlled runs
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Concepts

A cause of any event (”effect”) is a 
preceding event without which the effect 
would not have occurred.

To isolate a failure cause, use the 
scientific method.

Make the problem and its solution explicit.
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Concepts

Automated debugging organizes the 
scientific method by having the user assess 
outcomes

Best suited for functional and logical 
programs
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