Pt

A i, . g
AELE
1

St
.

LG
O
Q
N|
0
s

¥
)
4

BN

e AEL R
) et

LR O

From Defect to Failure

|. The programmer creates a

defect — an error in the code. Variables
{2 X)

2. When executed, the defect CT“Q‘
creates an infection — an 3
error in the state. N S

s el :

3. The infection propagates. :

¥

4. The infection causes a failure.

o
D .-
This infection chain must be re /

traced back — and broken.

Techniques

qfections

ertion

yendences

How do we integrate
] comes from a[0]

these techniques!?

Causes
e.g. f()"exect eg.a[2] =0
only in failing run causes the failure

All Techniques

¥ I
..
..
..
I.
..
.._
: L 4
| ..
L
| ..
l ._'
|
|
l N
l))
)
|
- L]
'. =
)
A)
))
))
:))
'))
.'. :
* o |
00 ... ‘
[)
. i -
.'. ‘
J 1 ‘
0)
00 |
u, I.t ‘-
. -~ :
o2 :
., = 0
o i %]
. 5 0
K v
. =
.
ty

¢_ *e
. Y
. 0 ‘
. -
. L oﬂp
. 0’ :
* *
TS
AN
I s B
‘
.
o+ 7 ’) ‘*
O!‘ | N »‘:..
s° : !
.
e . 0
. <
{4 .0
/‘ .
| I ..
¥ 8
Y
S : |
.)
:)
0¢k .
. N
s R .
.o» o3 :
)
Y
:)
)
., !
i r
000 ;
trd X
1 .
R)

Observation

Observation

Assertion

.
.
.
.
.
.
A . u
'y L 4
- vi—y
s «* o
4 v
. L‘ U
° L 4
“ . u o
o
* u &
T >
- o
.0‘ [] ‘.
o o
- Y
n] u .
P &
“§ v
‘
T I I
’
.
* 2
3 3
. .
. .
N “ 0‘
iy . ®
... * ”’
] - 0‘
...¢|| .
4
*
%
~t
0' £

Assertion

Anomaly

0- *
*
*

R4

L4
*
2 d
o
<
x :
’
L 2
*
*

Cause Transition

L 4
L 4
L4
*
2 d
o
<
x :
’
L 2
*
*

The Defect

‘0
‘!
*

<*
L 4
V'S
&
x »
/7
L 2
’0
ot

The Defect

Which techniques

do we use first!?

ctions

ertion

ependences

e.g.a[2] comes from a[0]

dUSES
: eg.af2] =0
only in failing run causes the failure

Ordering

ctions

ertion

ausSes
eg.a[2] =0
auses the failure

nomalies

e.g.f() executed
only in failing run

7,
=
&
o
C i
D E
e)
b
s
e
C

>)

a

-.-.Y-

The Traffic Principle

rack the problem
eproduce
utomate

ind Origins

ocus

solate

orrect

Validating the Defect

Any element of the infection chain must be
® infected — i.e., have an incorrect value

® a failure cause — i.e., changing it causes the
failure to no longer occur

Demonstrate by experiments and observation

|s the Error a Cause?

a = compute_value();
orintf("a = %d\n", a);

Is the Cause an Error?

balance[account] = 0.0;
for.(ank .= 0 1 2 n: J4d4)
balance[account] += deposit[1i]

// account 123 1s wrong - fix 1t
1f (account == 123)
balance[123] += 45.67

static void shell_sort(int a[], int size)

i
tht 1,535
Tt el
do { “lgnorant Surgery”

=t e 3l
} while (h <= size);
do {

/=5

for (1 = h; 1 < s1ize;-134)1++)

{

ali];
; J > h&%alj - h] >v; J -=h)

Cll:J " h],

1nt v

s
J)

1 while (h != 1);

Validating Causality

® |n principle, we must show causality for
each element of the infection chain

® However, a successful correction
retrospectively validates causality:

® Since the failure has gone, we have
proven that the defect caused the failure

® Yet, we must not fall into ignorant surgery

Think before you code

Before applying a fix, you must understand

® how your code change will break the
infection chain, and

® how this will make the failure (as well as
other failures) no longer occur

In fact, you have a theory about the defect

The Devil’s Guide
to Debugging

Find the defect by guessing:
® Scatter debugging statements everywhere
® [ry changing code until something works
® Don’t back up old versions of the code

® Don’t bother understanding what the
program should do

The Devil’s Guide
to Debugging (2)

Don’t waste time understanding the problem.

® Most problems are trivial, anyway.

The Devil’s Guide
to Debugging (3)

Use the most obvious fix.

® |ust fix what you see:

X = compute(y)
// compute(l7) 1s wrong - fix 1t
1f (y = 198

X =48 .15

Why bother going into compute()?

U
U
ul
—
O
U

Homework

Does the failure no longer occur?
® |f the failure is still there, this should
® |eave you astonished
® cause self-doubt + deep soul-searching
® happen rarely

® Note that there may be a second cause

Homework (2)

Did the correction introduce new problems!?
® Have corrections peer-reviewed

® Have a regression test to detect
unintended changes in behavior

® Check each correction individually

Homework (3)

Was the same mistake made elsewhere?

® Check for other defects caused by the
same mistake

® Other code of the same developer

® Code involving the same APlIs

Homework (4)

Did | commit the change!?
® Be sure to commit your change to
® the version control system

® the bug tracking system

Workarounds

Correcting the defect may be impossible:
® Unable to change
® Risks
® Design flaw

A workaround solves the problem at hand —
but mark it as a temporary solution

The Blues

Concepts

* To isolate the infection chain, transitively
work backwards along the infection origins.

* To find the most likely origins, focus on
* failing assertions
® causes in state, code, and input
e anomalies

e code smells

Concepts (2)

* To correct the defect, wait until you have a
theory about how the failure came to be

* Check that the correction solves the
problem and does not introduce new ones

* To avoid introducing new problems, use
code review and regression tests

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/ 1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

