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From Defect to Failure

|. The programmer creates a

defect — an error in the code. Variables
{2 X )

2. When executed, the defect CT“Q‘
creates an infection — an 3
error in the state. N S

s el :

3. The infection propagates. :

¥

4. The infection causes a failure.

o
D .-
This infection chain must be re /

traced back — and broken.




Techniques

qfections

ertion

yendences

How do we integrate
] comes from a[0]

these techniques!?

Causes
e.g. f()"exect eg.a[2] =0
only in failing run causes the failure



All Techniques
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Observation




Observation




Assertion
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Assertion




Anomaly
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Cause Transition
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The Defect
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The Defect

Which techniques

do we use first!?




ctions

ertion

ependences

e.g.a[2] comes from a[0]

dUSES
: eg.af2] =0
only in failing run causes the failure



Ordering

ctions

ertion

ausSes
eg.a[2] =0
auses the failure

nomalies

e.g.f() executed
only in failing run
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The Traffic Principle

rack the problem
eproduce
utomate

ind Origins

ocus

solate

orrect



Validating the Defect

Any element of the infection chain must be
® infected — i.e., have an incorrect value

® a failure cause — i.e., changing it causes the
failure to no longer occur

Demonstrate by experiments and observation



|s the Error a Cause?

a = compute_value();
orintf("a = %d\n", a);



Is the Cause an Error?

balance[account] = 0.0;
for.(ank .= 0 1 2 n: J4d4)
balance[account] += deposit[1i]

// account 123 1s wrong - fix 1t
1f (account == 123)
balance[123] += 45.67



static void shell_sort(int a[], int size)

i
tht 1,535
Tt el
do { “lgnorant Surgery”

=t e 3l
} while (h <= size);
do {

/=5

for (1 = h; 1 < s1ize;-134)1++)

{

ali];
; J > h&%alj - h] >v; J -=h)

Cll:J " h],

1nt v

s
J)

1 while (h != 1);



Validating Causality

® |n principle, we must show causality for
each element of the infection chain

® However, a successful correction
retrospectively validates causality:

® Since the failure has gone, we have
proven that the defect caused the failure

® Yet, we must not fall into ignorant surgery



Think before you code

Before applying a fix, you must understand

® how your code change will break the
infection chain, and

® how this will make the failure (as well as
other failures) no longer occur

In fact, you have a theory about the defect



The Devil’s Guide
to Debugging

Find the defect by guessing:
® Scatter debugging statements everywhere
® [ry changing code until something works
® Don’t back up old versions of the code

® Don’t bother understanding what the
program should do



The Devil’s Guide
to Debugging (2)

Don’t waste time understanding the problem.

® Most problems are trivial, anyway.



The Devil’s Guide
to Debugging (3)

Use the most obvious fix.

® |ust fix what you see:

X = compute(y)
// compute(l7) 1s wrong - fix 1t
1f (y = 198

X =48 .15

Why bother going into compute()?
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Homework

Does the failure no longer occur?
® |f the failure is still there, this should
® |eave you astonished
® cause self-doubt + deep soul-searching
® happen rarely

® Note that there may be a second cause



Homework (2)

Did the correction introduce new problems!?
® Have corrections peer-reviewed

® Have a regression test to detect
unintended changes in behavior

® Check each correction individually



Homework (3)

Was the same mistake made elsewhere?

® Check for other defects caused by the
same mistake

® Other code of the same developer

® Code involving the same APlIs



Homework (4)

Did | commit the change!?
® Be sure to commit your change to
® the version control system

® the bug tracking system



Workarounds

Correcting the defect may be impossible:
® Unable to change
® Risks
® Design flaw

A workaround solves the problem at hand —
but mark it as a temporary solution



The Blues




Concepts

* To isolate the infection chain, transitively
work backwards along the infection origins.

* To find the most likely origins, focus on
* failing assertions
® causes in state, code, and input
e anomalies

e code smells



Concepts (2)

* To correct the defect, wait until you have a
theory about how the failure came to be

* Check that the correction solves the
problem and does not introduce new ones

* To avoid introducing new problems, use
code review and regression tests
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